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Considered in this paper are the flows of a monatomic gas
or of monatomic gas mixtures in an infinite three~dimensionsl space,
for which the distribution functions of particles' natu al veloci-
ties is identical for all points. Without arguing this point, we
shall estimate everywhere the time, spatial coordinates and velo-
cities as dimensionleass, relating them respectively to same t:.ne too
length lo and velocity _i;/iq. scales for all cases, We shall designate
by x,4,2¢t the Descartes coordinates and the time and by 4, v,w —
the particle velocities; ¢ shell be the vector with components -
4, v,w. We shall understand for the distribution function

'ft' (tv Vxn Y, 2, u‘lo 0 * wl)
the number of particle of the i-th kind at the point x4 z,w, v, w,

of a six~dimensional space, related to volume element TEHJ'EEWW_-
The Boltzmann equation has the form [1]

-a:f%+ Wil 13',’+w ety v, NUR

where Ii. are the 1ntegrals of colllsions-

, lz—ZiSSS[fz € rne) i, c') f, ¢ r, c,)'f, 1. c,)lg,;bdbdedc,. @

EROSTEYSHIYE TOCHNYYE RESHENIYA URAVNENIYA BOL'TSMANA DLYA
DVIZHENIYA RAZREZHENNOGO GAZQ




Here r» is a vector with components x, y, z; ¢y is a vector with
componants un U, Wy g,,—lc‘:-—-c,], b is a dimensionless distance of aim;
€ is the correenond*r“ angle, dc,---duldv,dw;.

The vectors ci, °';j of particle velocities after collision
are linked with ¢y, <::l sy determined by the character of interaction
by the functgional dependence~ .

¢, =0y ncybe) &=, cnbg). (3)
It is obv16us that when 15art1¢1es are hard elastlc spheres,

the following similitude property taices place:
9y Oen Ac), b, €) = hp, erep by ) Wy (e, Ac, b, )=, €ncpbie), (4)
where A is a pos:.t:.ve arbitrary quantity.
It is assumed below, that for each transition to new variables

in the left-hand part of gquationé (1) there is an identical transi-
tion in the integrals in the integrals I; too. '

THREE-DIMENSIONAL SCATTERING-GATHERING. Assume that the

m_acroscopié velocities are distributed accordinc to the law

Le=t. @

nl'& )

U= s 0=

'n'h

For the case of a nonrarefied gas these flows were obtained
by L. I. Sedov [2]. The last expressions characteriseftwo types of
flows. Considering them at 0<?< oo, we obtain the scatter, and
at — o0 < {<0Q — the gathering. \ie shall require the fulfillment
of the equalities

he ;t: yf."z, uz, o w;)—ré-f: (+,0,0,0, Uy, Vi, | lV}).'
where f'-—t Ul-—-ul-—X/t V[“‘l’t—-x.’t Vt—wz~dt U:, V{.—"V‘t—“ " are
the natural velocities of particles. with variables %, U, V;, W, the
equations (1) will take the form

ETE o, oy e
—a—:- -;(Uz I+V1 I+Wt57;)—lt-» | . (6}



At xX=y =2 =0 we have U;=u), V,f——v}. W;=uw, and thus
the egquations (6) are equations for the distribution functions of
absolute velocities at t’he point x = y =2 =0, This is precisely
the way we shall understand them below. | '

Let us still intfoduce the variables T =T E = U, = ‘t'Vz._'
£ =1W. Uith these varisbles the ecuations (6) will take the form

of
=1 . m

In the trivial case when the integral I; is identically
equal to zero, 9f/0T =0, and we have
'f[ = Fl' (Ep "1' ;1 ‘—‘:AFI (tUh tV[. th)b (8)

where Fi are arbitrary functions oi arruments.

The total number of particles of i-th kind in the volume t3

is : o , T
e § °§—F, tUs, V1, tW) aU,av,dW, = § | § Fi@,6,0) dado de. 9
-—00 —Q0 —O0 (30 =00 —00 :

It is invesricble in time, as rmust be, The kinetic self-energy of

T Ui+ vi+w

o .
5 LdU.:dV,dW, =

particles of i-th kind in the same volume is erual to
- _
\ F v ., 1w)

-—00 —00

e §
- °§ °§ °§ Fi@ b, o) E3X2+E g5 apac. (10)

It veries inversely-proportionally to t2. The" integrals Ii are

icentically equal to zero in trivial case of absence of interaction
in the case when the distribution of particle velocities is at each
moment of time Maxwellian. Bearing in mind the last case, we shall

seek the solution of the system of ecuations (7) in the form
Fo = aexp (tm (5 + Wi+ )1 = asexp [— Kmit* (UF + Vi + WhHL, (11)
where k, oy are constants, my are the dimensionless masses of

- particles of the i-th kind., These expressions for distribution

functions satisfy the conditions (8) and thus transform into zero




the left-hand part of the equation (6), as previously. However,
they also transform into zero the right-hand part of (6), for they
provide at each fixed moment of time the liaxwellian velocity dis-
tributions, for which the collision integrals are zero for any
potential law of interactidn [1]. Bearing in mind the uniqueness
of Boltzmann equations' solution in time when the distribution

functions are given at a certain moment of time, we obtain:

THEOREM 1.,-— If atathree~-dimensional scattering or
gathering, marked by the equality (5), of a mixture of ideal monatomic
gases the distribution of natural velocities is Maxwellian, it will

also be Maxwellian at any subsequent moment of time, If at t = t,

fs = ouexp [— Em, (U7 + Vi + W £,
the equalities (11) wili be valid at t > t;. At the same time, and
gorrespondingly to equalities (9) and (10), the number of particles
of each kind in the volume hP is constant, and the total kinetic
energy of all particles in this volume being proportional to the

temperature, yill vary inversely-proportionally to the guantity tz.

Let us examine now a model, when particles are hard elastic
spheres, wWe shall consider first an arbitrary uniform state of gas,
rather than the flow "scattering-gathering", i, e, when the distribu-

tion functions f;—ft in ecuations (1) do not depend on r but on ¢t:

ks =2\\{1R ¢ c) Be.chre cof, e el g,pab de de; = ﬁkﬂ(ﬁ%

We shall attempt to compare each such state with a certain
flow "scattering-gathering". We shall seek the solution of equations
(7) in the foru:

h=RIxT Al A=|T|C.

where C4 is the vector with components U, V. Wi, the function % (T)

is subject to definition. Teking advantaze of similitude properties



5.

of (3) and (4) in the transformations of the rigkt-hand part of (7),
we shsll obtain in place of (7) the equatlo

d 99 (x. A) 1
AR Rl a).

The equalities (12) show, thet in order to solve the problem

set up, we must postulste

L=h6.0) =5 = § ). 116,

In this way, to each solution f, =f}(t, ¢/) of the Boltzmann
equations for a uniform_state of elastic svhere models would corres-
pond the solution f,=f}’[(ﬂ—%—;—), ]t]C;] of Boltzmann equations for
the "scattering-gathering” flows. The solution for the 'scattering-
gathering' case, for which at |t| = 1 (general case because of time

t, scale arbitrariness f;=®;(C), is obtained in the form

1, B= comst.

am _ 1 X (T)=B— 5 7%

dT T’
where fl (t, c) is the soluticn for a uniform sizate w1th 1n1t1al con-
ditions f'(o ) = ¢1 (c,)lncase of scatter t>0 and t —)wwe have
fi (¢, Ci=F (‘/,, tC.) ‘i.e. a distribution obtained in infinite t:.me correspond-
ing to that already obtained for a uniform ctate at t = -3—.

ror matiering flows t < 0, at _t->—0 fi {t. C) = fo_(OO, [tfc;).
Thcrefore, bearing in mind the theorem 1, valid for hard elastic sphere
models, and the well-known property of appraoching the Maxwellian
distribution at t —»00 and a uniform state [1], we obtain:

THEOREM 2, For elastic hard sphere models in case

of gathering flows, the distribution of natural velocities will either
be Maxwellian all the time, or will not, generally speasking, pass

into Maxwellian distribution even at t =00 ; in case of gathering

filows, the distribution tendsto become Maxwellian at t —s O.

«+s3  THE END T
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